Random permutations, random group actions and strong convergence

Charles Bordenave

CNRS & Aix-Marseille University

Joint work with Benoît Collins (Kyoto University)

1

Representations in high dimension

Unitary representation

Let G be a compact group and ρ be a unitary representation of G in \mathbb{C}^N , that is, for $g, h \in G$,

 $\rho(g) \in \mathbb{U}_N, \quad \rho(e) = I_N \quad \text{and} \quad \rho(g \cdot h) = \rho(g) \cdot \rho(h).$

For example, if $G = \mathbb{U}_n$, \mathbb{O}_n or \mathbb{S}_n :

- * standard rep : N = n, $\rho(U) = U$,
- * determinant : N = 1, $\rho(U) = \det(U)$,
- * tensor product : $N = n^{q_++q_-}, \ \rho(U) = U^{\otimes q_+} \otimes \overline{U}^{\otimes q_-}.$

Representations in high dimension

We consider a sequence of representations ρ_N of growing dimensions.

Non-commutative probability offers a natural framework to describe limits of representations of high dimensions, *Biane* (1995, 1998).

Here, we explore a probabilistic direction and study the representations by sampling group elements from the Haar measure.

Non-commutative probability space

NCPS : pair formed by a unital algebra \mathcal{A} and a linear functional $\tau : \mathcal{A} \to \mathbb{C}$ such that $\tau(1) = 1$. E.g. $\mathcal{A} = M_N(\mathbb{C}), \ \tau = \frac{1}{N}$ Tr.

 \mathcal{A} is a \star -algebra : it comes with a linear involution such that $(ab)^* = b^*a^*$ and $\tau(a^*) = \overline{\tau(a)}$.

Assume that $\tau(aa^*) \ge 0$ with equality iff a = 0 (positive and faithful).

We may define the norms

 $||a||_2 = \sqrt{\tau(aa^*)}$ and $||a|| = \sup\{||ab||_2 : ||b||_2 \le 1\}.$

Non-commutative probability space

In this talk, only two examples of NCPS.

Matrices : $\mathcal{A} = M_N(\mathbb{C}), \tau = \frac{1}{N}$ Tr and $\|\cdot\|$ is the operator norm.

Group algebra : G a countable group and \mathcal{A} the algebra on $\ell^2(G)$ generated by the left multiplication operators :

 $\lambda(g)(\delta_h) = \delta_{gh}.$

That is, λ is the left regular representation. It is unitary.

For $\tau = \langle \delta_e, \cdot \delta_e \rangle$, $\|\cdot\|$ coincides with the operator norm on $\ell^2(G)$.

Let $(v_{1,N}, \ldots, v_{d,N})$ be elements of a NCPS (\mathcal{A}_N, τ_N) and (v_1, \ldots, v_d) be elements of a NCPS (\mathcal{A}, τ) .

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoints,

 $\tau_N\left(P(v_{1,N},\ldots,v_{d,N})\right)\to\tau\left(P(v_1,\ldots,v_d)\right).$

E.g. $P = v_1v_2 - v_2v_1$, $P = v_1 + v_1^* + v_2 + v_2^*$ or $P = (v_1 + v_2)(v_1 + v_2)^*$.

Let $(v_{1,N}, \ldots, v_{d,N})$ be elements of a NCPS (\mathcal{A}_N, τ_N) and (v_1, \ldots, v_d) be elements of a NCPS (\mathcal{A}, τ) .

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoints,

$$\tau_N\left(P(v_{1,N},\ldots,v_{d,N})\right)\to\tau\left(P(v_1,\ldots,v_d)\right).$$

E.g. $P = v_1v_2 - v_2v_1$, $P = v_1 + v_1^* + v_2 + v_2^*$ or $P = (v_1 + v_2)(v_1 + v_2)^*$.

Strong convergence : in addition,

 $||P(v_{1,N},\ldots,v_{d,N})|| \to ||P(v_1,\ldots,v_d)||.$

Let $(v_{1,N}, \ldots, v_{d,N})$ be elements of a NCPS (\mathcal{A}_N, τ_N) and (v_1, \ldots, v_d) be elements of a NCPS (\mathcal{A}, τ) .

Convergence in NC distribution : for any NC polynomial P in d variables and their adjoints,

$$\tau_N \left(P(v_{1,N},\ldots,v_{d,N}) \right) \to \tau \left(P(v_1,\ldots,v_d) \right).$$

E.g. $P = v_1v_2 - v_2v_1$, $P = v_1 + v_1^* + v_2 + v_2^*$ or $P = (v_1 + v_2)(v_1 + v_2)^*$.

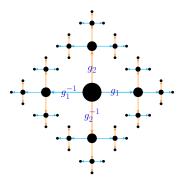
Strong convergence : in addition,

$$||P(v_{1,N},\ldots,v_{d,N})|| \to ||P(v_1,\ldots,v_d)||.$$

If (v_1, \ldots, v_d) are free one speaks of (strong) asymptotic freeness.

Free unitaries

Let \mathbb{F}_d be the free group with d free generators g_1, \ldots, g_d .



The unitary operators on $\ell^2(\mathbb{F}_d)$, $(\lambda(g_1), \ldots, \lambda(g_d))$ are free.

Voiculescu's freeness

Let (\mathcal{A}, τ) be a NCPS.

Sub-algebras $(\mathcal{A}_1, \ldots, \mathcal{A}_d)$ are free if

 $\tau(a_1a_2\cdots a_k)=0,$

whenever $\tau(a_i) = 0$ and $a_i \in \mathcal{A}_{l_i}, l_i \neq l_{i+1}$.

Elements (v_1, \ldots, v_d) are free if the subalgebras they span are free.

Asymptotic freeness :

- iid GUE matrices, Voiculescu (1991),
- iid Haar distributed unitary matrices, Voiculescu (1998),
- iid uniform permutation matrices, $Nica\ (1993)$,

- . . .

Strong asymptotic freeness :

- iid GUE matrices, Haagerup-Thorbjørnsen (2005), extended in many directions by Schultz, Capitaine-Donati, Male, Anderson, Collins-Guionnet-Parraud, Bandeira-Boedihardjo-van Handel, ...

- iid Haar distributed unitary matrices, Collins-Male (2012),
- iid uniform permutation matrices, B-Collins (2019).

The quest of strong convergence

Strong convergence has always very powerful consequences :

- * $\operatorname{Ext}(C^*_{\operatorname{red}}(F_2))$ is not a group Haagerup-Thorbjørnsen (2005).
- \star The generalized Alon's conjecture B-Collins (2019).
- \star Cut-off for finite space Markov chains B-Lacoin (2020).
- \star Hayes' approach to Peterson-Thom conjecture.

The quest of strong convergence

Strong convergence has always very powerful consequences :

- * $\operatorname{Ext}(C^*_{\operatorname{red}}(F_2))$ is not a group Haagerup-Thorbjørnsen (2005).
- \star The generalized Alon's conjecture B-Collins (2019).
- \star Cut-off for finite space Markov chains B-Lacoin (2020).
- \star Hayes' approach to Peterson-Thom conjecture.

BUT : no known non-trivial deterministic examples and few random examples.

Representations in high dimension

Back to our setting : G a compact group and ρ_N a unitary rep on \mathbb{C}^N .

We consider U_1, \ldots, U_d be iid uniform sampled according to the Haar measure on G and set

 $V_{i,N} = \rho_N(U_i) \in \mathbb{U}_N.$

Question : along a sequence $N \to \infty$, convergence of $(V_{1,N}, \ldots, V_{d,N})$?

In this talk : $G = \mathbb{U}_n$, \mathbb{O}_n or \mathbb{S}_n and (n, N) both go to infinity.

Alternative motivation I : Random representations of the free group

Consider the free group \mathbb{F}_d with d free generators g_1, \ldots, g_d .

The image of G through ρ_N is a subgroup Γ_N of \mathbb{U}_N and $V_{i,N} = \rho_N(U_i)$ is sampled according to the Haar measure on Γ_N .

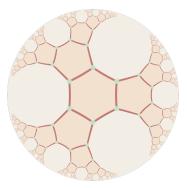
We set $\rho_N^{\text{free}}(g_i) = V_{i,N}$.

It extends uniquely to a unitary representation of \mathbb{F}_d on Γ_N : $\rho_N^{\text{free}}(g_1g_2g_1^{-1}) = V_1V_2V_1^*$. If Γ_N is a subgroup of \mathbb{S}_N one speaks of an action of \mathbb{F}_d on $\{1, \ldots, N\}$.

This random representation is uniform. How close is it to the regular representation of \mathbb{F}_d ?

Alternative motivation II : Optimal expander graphs

Construct strong finite dim approximations of operators like this one :



Courtesy of Ryan O'Donnell and Xinyu Wu

Alternative motivation III : Quantum expanders

For $G = \mathbb{U}_n$ or \mathbb{O}_n , in quantum info theory, the norm of operators like

$$\sum_{i=1}^{d} U_i \otimes \bar{U}_i + (U_i \otimes \bar{U}_i)^*$$

appears Hastings, Harrow, Pisier.

Strong asymptotic freeness for representations of the unitary group

Tensor product representation

Set $G = \mathbb{U}_n$ and consider the rep on \mathbb{C}^N , with $N = n^q$, $q_+ + q_- = q$,

 $V = U^{\otimes q_+} \otimes \bar{U}^{\otimes q_-}.$

If $q_{-} = q_{+}$, it has fixed points for all $U \in \mathbb{U}_n$. E.g. for $\mathbb{C}^{n^2} \simeq M_n(\mathbb{C})$,

 $(U \otimes \bar{U})I_n = UI_n U^* = I_n.$

We denote by H the vector subspace of \mathbb{C}^N of such fixed points (fully explicit of dim $(H) = q_+$!).

Tensor product representation

Let (U_1, \ldots, U_d) be iid Haar distributed on \mathbb{U}_n and

 $V_i = U_i^{\otimes q_+} \otimes \bar{U}_i^{\otimes q_-}.$

Theorem

Restricted to H^{\perp} , a.s. (V_1, \ldots, V_d) are strongly asymptotically free as $n \to \infty$ and $q = q_+ + q_- \leq c \ln(n) / \ln \ln(n)$.

The same statement holds for \mathbb{O}_n . Also, for \mathbb{S}_n and q = 1, 2.

Tensor product representation

Asymptotic freeness follows from Voiculescu (1998), Collins-Gaudreau Lamarre-Male (2017, 2020).

The only obstructions to strong freeness are the fixed points in H.

The simplest case $P = \sum_{i} V_i + V_i^*$ treated in *Harrow-Hastings (2009)*.

Related deterministic result in Bourgain-Gamburd (2012).

Irreducible representation

A rep of G is irreducible if it has no non-trivial stable subspace.

Irreducible rep ρ of \mathbb{U}_n are indexed by a signature : a pair of Young diagrams (λ, μ) , two non-increasing sequences of integers $\lambda_1 \ge \lambda_2 \ge \cdots \ge 0$ with length $|\rho| = \sum_i \lambda_i + \mu_i \le n$.

 $U \leftrightarrow ((1), 0), \overline{U} \leftrightarrow (0, (1)), \det(U) \leftrightarrow ((1, \dots, 1), 0), \dots$

Irreducible representation

Let (U_1, \ldots, U_d) be iid Haar distributed on \mathbb{U}_n and ρ an irreducible representation. We set

 $V_i = \rho(U_i).$

Corollary

A.s. (V_1, \ldots, V_d) are strongly asymptotically free as $n \to \infty$ and $1 \leq |\rho| \leq c \ln(n) / \ln \ln(n)$.

Indeed, ρ is a sub-representation of a tensor rep with $q = |\rho|$.

Result cannot hold for all rep : det(U) is one-dim and commutative.

Outline of proof

Analysis vs combinatorics

Strong asymptotic freeness results all relied on analysis : linearization, analytic properties of resolvent (Schwinger-Dyson - loop equation), complex analysis, interpolation methods.

In *B-Collins (2019)* results for random permutations rely on moments through new techniques.

For tensor products of Haar unitaries, we expand these techniques.

Strategy

- 1. Centering.
- $2. \ Linearization \ trick.$
- 3. Matrix-valued nonbacktracking operators.
- 4. Fűredi-Komlós expected high trace method.
- 5. High order centered Weingarten calculus.

Centering

 (U_1, \ldots, U_d) iid Haar distributed on \mathbb{U}_n and

 $V_i = U_i^{\otimes q_+} \otimes \bar{U}_i^{\otimes q_-}.$

H = vector subspace of \mathbb{C}^N of fixed points of this tensor rep.

We want to prove the strong asymp freeness of (V_1, \ldots, V_d) on H^{\perp} .

We have

 $\mathbb{E}V_i = \operatorname{Proj}_H.$

We need to prove the strong asymp freeness of $([V_1], \ldots, [V_d])$ with

 $[V_i] = V_i - \mathbb{E}V_i.$

Linearization trick

Let (v_1, \ldots, v_d) in a NCPS (\mathcal{A}, τ) and (V_1, \ldots, V_d) in $M_N(\mathbb{C})$. For $i = 1, \ldots, d$, set $i^* = i + d$, $i^{**} = i$,

$$V_{i+d} = V_{i^*} = V_i^*, \quad v_{i+d} = v_{i^*} = v_i^*.$$

Linearization trick

Let (v_1, \ldots, v_d) in a NCPS (\mathcal{A}, τ) and (V_1, \ldots, V_d) in $M_N(\mathbb{C})$. For $i = 1, \ldots, d$, set $i^* = i + d$, $i^{**} = i$,

$$V_{i+d} = V_{i^*} = V_i^*, \quad v_{i+d} = v_{i^*} = v_i^*.$$

The convergence for all NC polynomials,

$$||P(V_1, \dots, V_{2d})|| \to ||P(v_1, \dots, v_{2d})||$$

is equivalent to : for all integers $r \ge 1$ and $a_i \in M_r(\mathbb{C}), a_{i^*} = a_i^*$,

$$\left\|a_0 \otimes I + \sum_{i=1}^{2d} a_i \otimes V_i\right\| \to \left\|a_0 \otimes 1 + \sum_{i=1}^{2d} a_i \otimes v_i\right\|.$$

It suffices to consider matrix-valued polynomials of degree one !

Pisier (1996), Haagerup-Thorbjørnsen (2005)

Matrix-valued nonbacktracking operators

Assume now that (v_1, \ldots, v_d) are free unitaries and $V_i \in \mathbb{U}_N$, $a_i \in M_r(\mathbb{C})$,

$$A = a_0 \otimes I + \sum_{i=1}^{2a} a_i \otimes V_i.$$

For $b_i \in M_r(\mathbb{C})$, set $E_{ij} = e_i \otimes e_j \in M_{2d}(\mathbb{C})$ and

$$B = \sum_{(i,j):i \neq j^*} b_i \otimes V_i \otimes E_{ij}.$$

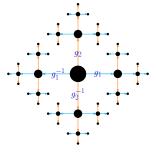
The convergence of the spectral radii of all nonbactracking operators implies the convergence of the spectrum of A.

Nonbacktracking operators

$$A = a_0 \otimes I + \sum_i a_i \otimes V_i$$
 vs $B = \sum_{(i,j):i \neq j^*} b_i \otimes V_i \otimes E_{ij}.$

On \mathbb{F}_d , powers of B follows geodesics : for $V_i = v_i = \lambda(g_i)$,

$$\begin{split} B^k \phi \otimes \pmb{\delta_e} \otimes \delta_j &= \sum_{g = (g_{i_1}, \ldots, g_{i_k})} \phi_g \otimes \pmb{\delta_g} \otimes \delta_{i_k}, \\ \text{with } (g_{i_1}, \ldots, g_{i_k}) \text{ reduced}, \ i_l \neq i_{l-1}^*, i_0 = j. \end{split}$$



Expected high trace method

$$B = \sum_{(i,j): i \neq j^*} b_i \otimes [V_i] \otimes E_{ij} , \quad B_{\text{free}} = \sum_{(i,j): i \neq j^*} b_i \otimes v_i \otimes E_{ij}.$$

Goal : compare the spectral radii of B and B_{free} for all values of (b_i) .

Expected high trace method

$$B = \sum_{(i,j): i \neq j^*} b_i \otimes [V_i] \otimes E_{ij} , \quad B_{\text{free}} = \sum_{(i,j): i \neq j^*} b_i \otimes v_i \otimes E_{ij}.$$

Goal : compare the spectral radii of B and B_{free} for all values of (b_i) .

For fixed (b_i) and $k \gg \ln(N)$,

 $\mathbb{E}\rho(B)^{2k} \leqslant \mathbb{E}\|B^k B^{k*}\| \leqslant \mathbb{E}\mathrm{Tr}(B^k B^{k*}) \stackrel{?}{\leqslant} N(1+o(1))^k \rho(B_{\mathrm{free}})^{2k}.$

We expand the trace as a sum of weighted paths, two ingredients :

- combinatoric of paths with the tensor structure of the V_i 's,
- average of product of 2k entries of the V_i 's.

A final net argument to have a joint probabilistic estimate for all (b_i) .

Centered Weingarten Calculus

For a random variable X, define $[X] = X - \mathbb{E}X$.

Let $U \in \mathbb{O}_n$ Haar distributed. We want to compute an expression like

$$\mathbb{E}\prod_{t=1}^{T}\left[\prod_{p=1}^{q}U_{i_{t,p}j_{t,p}}\right]$$

in a meaningful way with k = qT large.

Centered Weingarten Calculus

Wick calculus for Gaussian moments has an analog for unitary groups.

We can write a Weingarten formula

$$\mathbb{E}\prod_{t=1}^{T}\left[\prod_{p=1}^{q}U_{i_{tp}j_{tp}}\right] = \sum_{\sigma,\tau}\delta_{\sigma}(i)\delta_{\tau}(j)[\mathrm{Wg}](\sigma,\tau),$$

where the sum is over all pairs (σ, τ) of pairings of

$$I = \{(t, p) : 1 \leqslant t \leqslant T, 1 \leqslant p \leqslant q\},\$$

and $\delta_{\sigma}(i)$ is 1 if σ matches the same indices of *i* and 0 otherwise.

The expression of $[Wg](\sigma, \tau)$ is complicated but expanding on *Collins-Matsumoto (2017)* we have upper and lower bounds.

Haar unitary vs Gaussian

Let G_{ij} be iid standard Gaussian variables.

Theorem For $k = qT \leq n^{4/7}$, $k/2 = \frac{T}{T} \begin{bmatrix} q \\ T \end{bmatrix} = \frac{T}{T} \left(\begin{bmatrix} q \\ T \end{bmatrix} = \frac{T}{T} \right)$

$$\begin{split} n^{k/2} \left| \mathbb{E} \prod_{t=1}^{\mathbf{1}} \left[\prod_{p=1}^{q} U_{i_{tp}j_{tp}} \right] \right| &\leqslant (1+\delta) \mathbb{E} \prod_{t=1}^{\mathbf{1}} \left(\left[\prod_{p=1}^{q} G_{i_{tp}j_{tp}} \right] + \eta \right), \\ \text{with } \delta &= 3k^{7/2}n^{-2} \text{ and } \eta = 2k^q n^{-1/2}. \end{split}$$

The right-hand side can be estimated by using Wick calculus.

Concluding words

Further directions

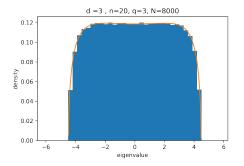
Among open directions :

- \star non-asymptotic bounds,
- \star tensor product of permutation matrices,
- * random and deterministic unitary matrices (Sarah's talk),
- replace the free group by other non-amenable groups, such as surface groups (Magee, Naud, Puder) or free products of finite groups (Puder, Zimhoni).
- \star what happens for n fixed and $q \to \infty \, ?$

Simulation

For (U_1, \ldots, U_d) iid Haar on \mathbb{SU}_n and

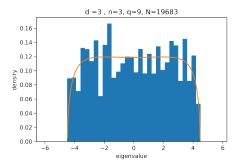
$$\sum_{i=1}^{d} U_i^{\otimes q} + U_i^{\otimes q}.$$



Simulation

For (U_1, \ldots, U_d) iid Haar on \mathbb{SU}_n and

$$\sum_{i=1}^{d} U_i^{\otimes q} + U_i^{\otimes q}.$$



Thank you for your attention!