Up-down chains arising from the ordered Chinese Restaurant Process

Kelvin Rivera-Lopez Joint with Douglas Rizzolo

Random Permutations Meet Random Matrices

April 8, 2022

The Chinese Restaurant Process

Customer 1 Enters:

• sits alone \longrightarrow record $\{\{1\}\}$

Customer 2 Enters:

▶ $1 - \alpha \longrightarrow \text{ joins } 1 \longrightarrow \text{ record } \{\{1, 2\}\}$

• $\alpha + \theta \longrightarrow$ sits alone \longrightarrow record $\{\{1\}, \{2\}\}$

Customer k Enters:

. . .

• $m - \alpha \longrightarrow$ joins table with *m* customers \longrightarrow add *k* to a set

• $\alpha N + \theta \longrightarrow$ sits alone \longrightarrow add the singleton $\{k\}$

The Chinese Restaurant Process

- ▶ Π_n : the n^{th} record
 - random set partition of {1,2,...,n}
- CRP: $(\Pi_n)_{n\geq 1}$
- An interesting property:

$$\blacktriangleright \ \Pi_n \xrightarrow[]{\mathsf{CRP}} \Pi_{n+1} \xrightarrow[]{\text{uniform}} \Pi'_n \stackrel{d}{=} \Pi_n$$

- CRP + uniform deletion
 - Markov chain on partitions of {1,...,n}
 - Iaw of Π_n is stationary
- Theme:
 - growth + decay models \leftrightarrow well-known stationary distributions
- Growth + decay model = up-down chain

- ► Sizes: ${A_1, \ldots, A_N} \longmapsto (|A_1|, \ldots, |A_N|)_{dec}$
- Up-step: Sizes $(\Pi_n) \longrightarrow Sizes(\Pi_{n+1})$
- Down-step: uniformly delete a box
- Results:
 - there is a scaling limit
 - the limit generalizes the IMNA* model
 - ▶ $\mathsf{PD}(\alpha, \theta)^{\dagger}$ is stationary

^{*}Infinitely-Many-Neutral-Alleles [†]Poisson-Dirichlet distribution

Ordered Analogues

The ordered CRP universe:

- oCRP
- ordered $PD(\alpha, \theta)$
- Missing: ordered variant of Petrov diffusions

Some work:

- Shi, Winkel
 - Stationarity: 2020
- ▶ Forman, Pal, Rizzolo, Winkel
 - Stationarity: 2017, 19, 19, 20
 - Ordering: in progress
 - Convergence: conjectured by Rogers, Winkel

Our work:

- Rivera-Lopez, Rizzolo
 - Stationarity, Ordering, Convergence: 2020

Integer Compositions

- Composition of n
 n ≥ 1: σ = (σ₁, ..., σ_k)
 σ_i are positive integers
 ∑σ_i = n
 n = 0: Ø = ()
 C_n = {compositions of n}.
 C = ∪C_n
- Correspond to diagrams

$$\sigma = (2, 3, 1, 1, 2) \quad \longmapsto$$

The Graph of Compositions: $\ensuremath{\mathcal{C}}$

The Up-Down Chains: $\{X_n\}_{n\geq 1}$

- ► State Space: *C_n*
- Transition Matrix: $T_n = U_n D_n$
 - ▶ Up-step (*U_n*):

b Down-step (D_n) : uniform deletion

The Ambient Space: $\ensuremath{\mathcal{U}}$

- ▶ $U = \{\text{open subsets of } (0,1)\}$
- Metric:
 - $d(U, V) = \text{Hausdorff Distance}(U^c, V^c)$
- Inclusion:

$$\blacktriangleright \ \iota : \mathcal{C} \to \mathcal{U}$$

There exists a Feller diffusion $(X(t))_{t\geq 0}$ on \mathcal{U} such that

$$\iota\left(X_n(\lfloor n^2t\rfloor)\right)\longrightarrow X(t)$$

whenever the initial distributions converge.

(convergence of paths in distribution on Skorokhod space)

The Approach

The Path-Counting Identity

- $g(\sigma, \tau) = \#$ paths from σ to τ
- ▶ path \longleftrightarrow deconstruction
- Decomposition of a path:
 - 1. choose which boxes to remove

$$b = (1, 2, 1)$$

2. choose when to remove each box

•
$$\pi = (\{3\}, \{1, 4\}, \{2\})$$

Result:

$$g(\sigma,\tau) = \sum_{b} \frac{(|\tau| - |\sigma|)!}{\prod b_{r}!}.$$

The Algebra of Quasisymmetric Functions: Λ

- Quasisymmetric function:
 - ▶ Formal power series in *y*₁, *y*₂,...
 - Bounded degree
 - Coefficient of $y_1^{a_1} \dots y_k^{a_k} = \text{Coefficient of } y_{i_1}^{a_1} \dots y_{i_k}^{a_k}$ for *i* monotone
- For example,

$$y_1^4 y_2 + y_1^4 y_3 + y_1^4 y_4 + \dots = \sum_{i_1 < i_2} y_{i_1}^4 y_{i_2}$$
$$+ y_2^4 y_3 + y_2^4 y_4 + \dots + y_7^4 y_9 + \dots$$

Basis of monomials:

$$m_{\sigma} = \sum_{i_1 < \ldots < i_k} \prod_{r=1}^k y_{i_r}^{\sigma_r}, \quad \sigma = (\sigma_1, \ldots, \sigma_k) \in \mathcal{C}$$

Basis of *monomial-variants*:

$$m_{\sigma}^* = \sum_{i_1 < \ldots < i_k} \prod_{r=1}^k y_{i_r}^{\downarrow \sigma_r}, \quad \sigma \in \mathcal{C}$$

where $a^{\downarrow b} = a(a-1) \cdot \ldots \cdot (a-(b-1))$

The QS Path-Counting Identity

Path-Counting Identity + some combinatorics

$$m^*_{\sigma}(au) = g(\sigma, au) rac{| au|^{\downarrow|\sigma|}}{g(arnothing, au)}$$

∜

where

$$\begin{split} m_{\sigma}^{*}(\tau) &= \sum_{i_{1} < \ldots < i_{k} \leq \ell} \prod_{r=1}^{k} \tau_{i_{r}}^{\downarrow \sigma_{r}} \\ (\ell = \# \text{ components in } \tau) \end{split}$$

The Down Operators

∜

$D_n m^*_\sigma = \operatorname{cor}$	istant $ imes \textit{m}_{\sigma}^{*}$
\uparrow	\uparrow
$\in C(\mathcal{C}_n)$	$\in C(\mathcal{C}_{n+1})$

The Transition Operators (in C)

explicit formulas for D_n, U_n + $T_n = U_n D_n$ \Downarrow

$$T_n m_\sigma^* = \mathsf{a}_\sigma m_\sigma^* + \sum_{\mu
earrow \sigma} \mathsf{b}_{\mu,\sigma} m_\mu^*$$

The Transition Operators (in U)

Transition operator: $\iota(T_n)$

$$\blacktriangleright \iota(T_n) \colon C(\mathcal{U}) \to C(\mathcal{U})$$

Gnedin (1997)

► Each $q \in \Lambda$ has a natural identification q^o in C(U)Result:

$$T_n \, m^*_\sigma = \mathsf{a}_\sigma m^*_\sigma + \sum_{\mu \, < \, \sigma} b_{\mu,\sigma} m^*_\mu$$

∜

$$\iota(T_n)(m_{\sigma}^*)^{o} = a_{\sigma}(m_{\sigma}^*)^{o} + \sum_{\mu < \sigma} b_{\mu,\sigma}(m_{\mu}^*)^{o}$$

The Convergence Argument

$$m_{\sigma}^{*}=m_{\sigma}+$$
 lower order terms

∜

$$(m^*_\sigma)^o = m^o_\sigma + o(1)$$

A summary

CRP

- up-down chains are natural
- Petrov + ordered CRP universe
 - left a gap
 - there has been partial progress
 - we complete the picture
- Approach
 - algebraic + combinatorial
 - inspired by Petrov and others

•
$$g(\sigma, \tau) \approx m_{\sigma}^*$$

- T_n are triangular (m_{σ}^*)
- $\iota(T_n)$ is also triangular $((m_{\sigma}^*)^o)$
- $m_{\sigma}^{*} = m_{\sigma} + ext{lower order terms}$

Questions?