Up-down chains arising from the ordered Chinese Restaurant Process

Kelvin Rivera-Lopez
Joint with Douglas Rizzolo

Random Permutations Meet Random Matrices
April 8, 2022

The Chinese Restaurant Process

(1) $3 \ldots$

- Customer 1 Enters:
- sits alone \longrightarrow record $\{\{1\}\}$
- Customer 2 Enters:
- $1-\alpha \longrightarrow$ joins $1 \longrightarrow$ record $\{\{1,2\}\}$
$-\alpha+\theta \longrightarrow$ sits alone $\longrightarrow \operatorname{record}\{\{1\},\{2\}\}$
- Customer k Enters:
- $m-\alpha \longrightarrow$ joins table with m customers \longrightarrow add k to a set
- $\alpha N+\theta \longrightarrow$ sits alone \longrightarrow add the singleton $\{k\}$

The Chinese Restaurant Process

- Π_{n} : the $n^{\text {th }}$ record
- random set partition of $\{1,2, \ldots, n\}$
- CRP: $\left(\Pi_{n}\right)_{n \geq 1}$
- An interesting property:
$-\Pi_{n} \xrightarrow[C R P]{\longrightarrow} \Pi_{n+1} \xrightarrow[\substack{\text { uniform } \\ \text { deletion }}]{ } \Pi_{n}^{\prime} \stackrel{d}{=} \Pi_{n}$
- CRP + uniform deletion
- Markov chain on partitions of $\{1, \ldots, n\}$
- law of Π_{n} is stationary
- Theme:
- growth + decay models \longleftrightarrow well-known stationary distributions
- Growth + decay model = up-down chain

Petrov's Chains

- Sizes: $\left\{A_{1}, \ldots, A_{N}\right\} \longmapsto\left(\left|A_{1}\right|, \ldots,\left|A_{N}\right|\right)_{\text {dec }}$
- Up-step: $\operatorname{Sizes}\left(\Pi_{n}\right) \longrightarrow \operatorname{Sizes}\left(\Pi_{n+1}\right)$
- Down-step: uniformly delete a box
- Results:
- there is a scaling limit
- the limit generalizes the IMNA* model
- $\mathrm{PD}(\alpha, \theta)^{\dagger}$ is stationary

[^0]
Ordered Analogues

The ordered CRP universe:

- oCRP
- ordered $\mathrm{PD}(\alpha, \theta)$
- Missing: ordered variant of Petrov diffusions

Some work:

- Shi, Winkel
- Stationarity: 2020
- Forman, Pal, Rizzolo, Winkel
- Stationarity: 2017, 19, 19, 20
- Ordering: in progress
- Convergence: conjectured by Rogers, Winkel

Our work:

- Rivera-Lopez, Rizzolo
- Stationarity, Ordering, Convergence: 2020

Integer Compositions

- Composition of n
- $n \geq 1: \sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$
- σ_{i} are positive integers
$>\sum \sigma_{i}=n$
- $n=0: \varnothing=()$
- $\mathcal{C}_{n}=\{$ compositions of $n\}$.
- $\mathcal{C}=\cup \mathcal{C}_{n}$
- Correspond to diagrams

The Graph of Compositions: \mathcal{C}

The Up-Down Chains: $\left\{X_{n}\right\}_{n \geq 1}$

- State Space: \mathcal{C}_{n}
- Transition Matrix: $T_{n}=U_{n} D_{n}$
- Up-step (U_{n}):

- Down-step $\left(D_{n}\right)$: uniform deletion

The Ambient Space: \mathcal{U}

- $\mathcal{U}=\{$ open subsets of $(0,1)\}$
- Metric:
- $d(U, V)=$ Hausdorff Distance $\left(U^{c}, V^{c}\right)$
- Inclusion:
- $\iota: \mathcal{C} \rightarrow \mathcal{U}$

The Main Result

There exists a Feller diffusion $(X(t))_{t \geq 0}$ on \mathcal{U} such that

$$
\iota\left(X_{n}\left(\left\lfloor n^{2} t\right\rfloor\right)\right) \longrightarrow X(t)
$$

whenever the initial distributions converge.
(convergence of paths in distribution on Skorokhod space)

The Approach

Description of
\mathcal{C} chains

Description of \mathcal{U} chains

Convergence
of generators

Description
of U_{n}

Convergence of processes

- Borodin, Olshanski (2009)

The Path-Counting Identity

- $g(\sigma, \tau)=\#$ paths from σ to τ
- path \longleftrightarrow deconstruction
- Decomposition of a path:

1. choose which boxes to remove

2. choose when to remove each box

- $\pi=(\{3\},\{1,4\},\{2\})$
- Result:

$$
g(\sigma, \tau)=\sum_{b} \frac{(|\tau|-|\sigma|)!}{\prod b_{r}!}
$$

The Algebra of Quasisymmetric Functions: Λ

- Quasisymmetric function:
- Formal power series in y_{1}, y_{2}, \ldots
- Bounded degree
- Coefficient of $y_{1}^{a_{1}} \ldots y_{k}^{a_{k}}=$ Coefficient of $y_{i_{1}}^{a_{1}} \ldots y_{i_{k}}^{a_{k}}$ for i monotone
- For example,

$$
\begin{aligned}
& y_{1}^{4} y_{2}+y_{1}^{4} y_{3}+y_{1}^{4} y_{4}+\ldots=\sum_{i_{1}<i_{2}} y_{i_{1}}^{4} y_{i_{2}} \\
&+y_{2}^{4} y_{3}+y_{2}^{4} y_{4}+\ldots+y_{7}^{4} y_{9}+\ldots
\end{aligned}
$$

- Basis of monomials:

$$
m_{\sigma}=\sum_{i_{1}<\ldots<i_{k}} \prod_{r=1}^{k} y_{i_{r}}^{\sigma_{r}}, \quad \sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathcal{C}
$$

- Basis of monomial-variants:

$$
\begin{gathered}
m_{\sigma}^{*}=\sum_{i_{1}<\ldots<i_{k}} \prod_{r=1}^{k} y_{i_{r}}^{\downarrow \sigma_{r}}, \quad \sigma \in \mathcal{C} \\
\text { where } a^{\downarrow b}=a(a-1) \cdot \ldots \cdot(a-(b-1))
\end{gathered}
$$

The QS Path-Counting Identity

Path-Counting Identity

$+$
some combinatorics
\Downarrow

$$
m_{\sigma}^{*}(\tau)=g(\sigma, \tau) \frac{|\tau|^{||\sigma|}}{g(\varnothing, \tau)}
$$

where

$$
\begin{gathered}
m_{\sigma}^{*}(\tau)=\sum_{i_{1}<\ldots<i_{k} \leq \ell} \prod_{r=1}^{k} \tau_{i_{r}}^{\downarrow \sigma_{r}} \\
(\ell=\# \text { components in } \tau)
\end{gathered}
$$

The Down Operators

QS Path-Counting Identity
 $+$
 some more combinatorics

$$
\Downarrow
$$

$$
\begin{aligned}
& D_{n} m_{\sigma}^{*}=\text { constant } \times m_{\sigma}^{*} \\
& \uparrow \\
& \in C\left(\mathcal{C}_{n}\right) \quad \uparrow \\
& \in C\left(\mathcal{C}_{n+1}\right)
\end{aligned}
$$

The Transition Operators (in \mathcal{C})

$$
\begin{gathered}
\text { explicit formulas for } D_{n}, U_{n} \\
+ \\
T_{n}=U_{n} D_{n} \\
\Downarrow \\
T_{n} m_{\sigma}^{*}=a_{\sigma} m_{\sigma}^{*}+\sum_{\mu \nearrow \sigma} b_{\mu, \sigma} m_{\mu}^{*}
\end{gathered}
$$

- triangular

The Transition Operators (in \mathcal{U})

Transition operator: $\iota\left(T_{n}\right)$

- $\iota\left(T_{n}\right): C(\mathcal{U}) \rightarrow C(\mathcal{U})$

Gnedin (1997)

- Each $q \in \Lambda$ has a natural identification q° in $C(\mathcal{U})$

Result:

$$
\begin{gathered}
T_{n} m_{\sigma}^{*}=a_{\sigma} m_{\sigma}^{*}+\sum_{\mu<\sigma} b_{\mu, \sigma} m_{\mu}^{*} \\
\Downarrow \\
\iota\left(T_{n}\right)\left(m_{\sigma}^{*}\right)^{\circ}=a_{\sigma}\left(m_{\sigma}^{*}\right)^{\circ}+\sum_{\mu<\sigma} b_{\mu, \sigma}\left(m_{\mu}^{*}\right)^{\circ}
\end{gathered}
$$

The Convergence Argument

$$
m_{\sigma}^{*}=m_{\sigma}+\text { lower order terms }
$$

$$
\begin{gathered}
\Downarrow \\
\left(m_{\sigma}^{*}\right)^{\circ}=m_{\sigma}^{o}+o(1)
\end{gathered}
$$

A summary

- CRP
- up-down chains are natural
- Petrov + ordered CRP universe
- left a gap
- there has been partial progress
- we complete the picture
- Approach
- algebraic + combinatorial
- inspired by Petrov and others
- $g(\sigma, \tau) \approx m_{\sigma}^{*}$
- T_{n} are triangular $\left(m_{\sigma}^{*}\right)$
- $\iota\left(T_{n}\right)$ is also triangular $\left(\left(m_{\sigma}^{*}\right)^{\circ}\right)$
- $m_{\sigma}^{*}=m_{\sigma}+$ lower order terms

Thank you!

Questions?

[^0]: *Infinitely-Many-Neutral-Alleles
 ${ }^{\dagger}$ Poisson-Dirichlet distribution

